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Abstract: This is a sequel of our paper hep-th/0606125 in which we have studied the

N = 1 SU(N) SYM theory obtained as a marginal deformation of the N = 4 theory, with

a complex deformation parameter β and in the planar limit. There we have addressed

the issue of conformal invariance imposing the theory to be finite and we have found that

finiteness requires reality of the deformation parameter β.

In this paper we relax the finiteness request and look for a theory that in the planar

limit has vanishing beta functions. We perform explicit calculations up to five loop order:

we find that the conditions of beta function vanishing can be achieved with a complex

deformation parameter, but the theory is not finite and the result depends on the arbitrary

choice of the subtraction procedure. Therefore, while the finiteness condition leads to a

scheme independent result, so that the conformal invariant theory with a real deformation

is physically well defined, the condition of vanishing beta function leads to a result which

is scheme dependent and therefore of unclear significance.

In order to show that these findings are not an artefact of dimensional regularization, we

confirm our results within the differential renormalization approach.
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1. Introduction

Recently we have studied marginal deformations of the N = 4 supersymmetric Yang-Mills

theory best known as β-deformations. These theories are obtained through the following

modification of the N = 4 theory: one enlarges the space of parameters adding to the

gauge coupling g two complex couplings h and β. These new parameters enter the chiral

superpotential via the substitution

ig Tr( Φ1Φ2Φ3 − Φ1Φ3Φ2 ) −→ ih Tr
(

eiπβ Φ1Φ2Φ3 − e−iπβ Φ1Φ3Φ2

)

(1.1)

It has been argued that these β-deformed N = 1 theories become conformally invariant if

the constants g, h and β satisfy one equation in the space of parameters [1]. Of course it

is of interest to find this condition explicitly. For the case of β real and in the planar limit

we have shown [2] that to all perturbative orders this equation is simply given by

hh̄ = g2 (1.2)

The corresponding conformal theory represents the exact field theory dual to the Lunin-

Maldacena supergravity background [3]. Further confirmation of this result can be found

in [4, 5].

In a recent paper [6] we have extended our study to the case of complex β [7]. The

analysis was performed in the planar limit, using a perturbative approach, superspace tech-

niques and dimensional regularization. With the aim of addressing the issue of conformal

invariance we have investigated the finiteness of the theory. In fact simply imposing the

finiteness of the two-point chiral correlators we found that only real values of the parameter

β are allowed, thus leading to the condition in (1.2). Being the theory finite, this result is
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obviously independent of the renormalization scheme adopted throughout the calculation.

The corresponding theory is conformal invariant and perfectly well defined.

On one hand this result might be somewhat surprising since the expectation was to find

an equation for the parameters, g real and h and β complex, with no additional constraints.

On the other hand the request of real β seems to be in agreement with results in the string

dual approach where singularities appear in the deformed metric as soon as β acquires

an imaginary part [3, 8, 9]. Our findings are also consistent with results concerning the

integrability of the theory [10, 11].

In this paper we reexamine the problem imposing less restrictive requirements. Here

in order to have a conformal theory we simply ask the gauge beta function and the chiral

beta function to vanish. The general strategy we have in mind is to define the theory

at its conformal point looking for a surface of renormalization group fixed points in the

space of the coupling constants. This amounts to perform a coupling constant reduction

by expressing the chiral couplings as functions of the gauge coupling g. This operation has

an immediate consequence: we are forced to work perturbatively in powers of g instead

of powers of loops. This allows different loop orders to mix and in general the conditions

which insure finiteness become different from the conditions for vanishing beta functions.

Therefore standard finiteness theorems [12, 13] for the gauge beta function cannot be used.

We perform explicit calculations up to five loops and find that the condition of van-

ishing beta functions can be accomplished with a complex deformation parameter, but the

theory is not finite. Thus we are forced to renormalize the theory and consequently the

result is dependent on the arbitrary choice of the subtraction procedure. Of course if we

want to recover a result that does not depend on the renormalization scheme we have to

impose finiteness and then we go back to a real deformation parameter.

In order to make sure that our findings are independent of the regularization procedure

we have adopted, i.e. dimensional regularization,1 we have redone various calculations

within the differential renormalization approach and confirmed the results.

It is worthwhile emphasizing that the five-loop calculation of the planar gauge beta

function is a highly non trivial exercise. We have accomplished it through the use of

improved superspace techniques [14, 13] in conjunction with a lot of ingenuity in the D-

algebra manipulations. Our result gives indication that a generalization of the standard

finiteness theorems [12, 13] for the gauge beta function holds, i.e. if the matter chiral beta

function vanishes up to O(gn) then the gauge beta function is guaranteed to vanish up to

O(gn+2).

The paper is organized as follows. In section 2 we describe the general approach and

briefly review our previous calculation [6]. In section 3 we present the evaluation of the

chiral and vector beta functions. We explicitly show how the conditions of vanishing beta

functions do not give a finite theory and explain how the dependence on the renormal-

ization scheme adopted affects the result. In section 4 we discuss the calculation within

the differential renormalization approach with the use of analytic regularization. Final

comments are in our conclusions.

1From our experience dimensional regularization always works but it is often questioned.
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2. The general setting and a brief review of conformal invariance of the

β-deformed theory via finiteness

We consider the N = 1 β-deformed action written in terms of the superfield strength

Wα = iD̄2(e−gV DαegV ) and three chiral superfields Φi with i = 1, 2, 3. With notations as

in [15] we have

S =

∫

d8z Tr
(

e−gV Φ̄ie
gV Φi

)

+
1

2g2

∫

d6z Tr(W αWα)

+ih

∫

d6z Tr

(

q Φ1Φ2Φ3 −
1

q
Φ1Φ3Φ2

)

+ih̄

∫

d6z̄ Tr

(

1

q̄
Φ̄1Φ̄2Φ̄3 − q̄ Φ̄1Φ̄3Φ̄2

)

, q ≡ eiπβ (2.1)

where h and β are complex couplings and g is the real gauge coupling constant. In the

undeformed N = 4 SYM theory one has h = g and q = 1. In the present case it is

convenient to define

h1 ≡ hq h2 ≡
h

q
(2.2)

and work with couplings g, h1 and h2.

In the spirit of [1] (see also [16]–[21]) the idea is to find a surface of renormalization

group fixed points in the space of the coupling constants. To this end one reparametrizes

these couplings in terms of the gauge coupling g. In fact, since in the planar limit for each

diagram the color factors from chiral vertices is always in terms of the products h2
1 ≡ h1h̄1

and h2
2 ≡ h2h̄2, we express directly h2

1 and h2
2 as power series in the coupling g2 as follows

h2
1 = a1g

2 + a2g
4 + a3g

6 + . . .

h2
2 = b1g

2 + b2g
4 + b3g

6 + . . . (2.3)

The final goal is to study the condition that in the large N limit the couplings have to

satisfy in order to guarantee the conformal invariance of the theory for complex values of

h and β.

In the large N limit for real values of β, i.e. if qq̄ = 1, the β-deformed theory becomes

exactly conformally invariant if the condition (1.2) is satisfied [2]. In this case the chiral

couplings differ only by a phase from the ones of the N = 4 SYM theory and the planar

limits of the two theories are essentially the same.

When qq̄ 6= 1, in order to isolate the relevant terms and drastically simplify the anal-

ysis, it is convenient [22] to study the condition of conformal invariance considering the

difference between contributions computed in the β-deformed theory and the correspond-

ing ones in the N = 4 SYM theory (which is finite and with vanishing beta function).

The simplification is due essentially to the following facts: when computing the difference

between graphs in the β-deformed and in the N = 4 theory we need not consider diagrams

that contain only gauge-type vertices since their contributions is the same in the two theo-

ries. Instead we concentrate on divergent graphs that contain either only chiral vertices or

mixed chiral and gauge vertices. In fact the relevant terms come from the chiral vertices
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that are actually different in the two theories. Addition of vectors simply modifies the color

due to the chiral vertices by the multiplication of g2 factors which are the same for both

theories.

The idea is to proceed perturbatively in superspace. The propagators for the vector and

chiral superfields, and the interaction vertices are obtained directly from the action in (2.1).

Supergraphs are evaluated performing the D-algebra in the loops and the corresponding

divergent integrals are computed using dimensional regularization in n = 4 − 2ǫ.

In [6] these techniques were used to impose the condition of finiteness on the β-deformed

theory and to this end it was sufficient to require finiteness of the two-point chiral correlator.

We review the relevant steps of the calculation performed in [6] and refer the reader to

that paper for technical details.

At order g2 we have to consider one-loop divergent diagrams in the β-deformed and

in the N = 4 theory and compute the difference. This amounts to the evaluation of chiral

bubbles and gives the following divergent contribution to the chiral propagator

N

(4π)2
[

h2
1 + h2

2 − 2g2
] 1

ǫ
(2.4)

Using the expansions in (2.3), in order to obtain a finite result we have to impose the

condition

O(g2) : a1 + b1 − 2 = 0 (2.5)

In fact we have shown [6] that the condition

h2
1 + h2

2 = 2g2 (2.6)

ensures conformal invariance up to three loops in the planar limit. For the chiral two-point

function the only divergences come from the one-loop bubble and this implies that up to

order g6, we find the following additional requirements

O(g4) : a2 + b2 = 0

O(g6) : a3 + b3 = 0 (2.7)

When we move up to four loops we can repeat the same reasoning as above. Indeed using

the condition in (2.6) we can show that all the four-loop diagrams that either contain

vector lines on chiral bubbles or consist of various arrangements of chiral bubbles are not

relevant. We simply need to focus on a new type of chiral divergent structure, the one

shown in figure 1.

From the four-loop calculation in [6] we find that, computing the difference with the

corresponding contribution from the N = 4 theory and using the expansions (2.3) finiteness

is achieved if

O(g8) : a4 + b4 −
5

2
ζ(5) N3 1

(4π)6
(a1 − b1)

4 = 0 (2.8)

For later convenience we define

A ≡
N

(4π)2
(a4 + b4) B ≡ −

5

2
ζ(5)

N4

(4π)8
(a1 − b1)

4 (2.9)
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Figure 1: Four-loop supergraph and its associated relevant bosonic integral.

so that the previous condition becomes

A + B = 0 (2.10)

Then we move to the next order. If we were following a standard procedure, i.e. canceling

divergences order by order in loops, having canceled the 1/ǫ pole terms at lower orders we

would be guaranteed of the vanishing of the 1/ǫ2 terms at the next order. In our case,

instead, we have imposed the finiteness condition order by order in g2. At the order g8 this

has led us to the relation (2.10) which allowed us to cancel the 1/ǫ pole from the one-loop

diagram with the 1/ǫ pole from the four-loop diagram. When computing the chiral two-

point function, these one- and four-loop structures show up at order g10 as subdivergences

in two-loop and five-loop integrals respectively. It is easy to realize that they produce

1/ǫ2-pole terms. In [6] we have shown that in order to cancel the 1/ǫ2 terms one has to

impose A = B = 0, i.e.

a1 = b1 = 1 and a4 + b4 = 0 (2.11)

We note that at the order g8 the finiteness condition (2.10) is not sufficient to insure the

vanishing of the chiral beta function which turns out to be proportional to A + 4B (see

eq. (3.3) in the next section). Therefore at this order the theory is finite but the beta

functions do not vanish. However if we take into account the finiteness condition from the

order g10 we end with A = B = 0 which leads to a theory finite and at a RG fixed point.

Under the conditions in (2.11) 1/ǫ divergences at five and two loops are automatically

canceled. Thus at order g10 the only divergence in the chiral propagator comes again from

the one-loop bubble eq. (2.4) and we are forced to impose

a5 + b5 = 0 (2.12)

In [6] we have shown that new chiral graphs at six loops and higher are not relevant.

Therefore, everything is controlled by the cancellation of 1/ǫ divergences at one and four

loops and of 1/ǫ2 poles at two and five loops. These patterns repeat themselves at the

order (g2)4k and at the order (g2)4k+1 respectively.

The final solution is simply (see [6] for details)

a1 = b1 = 1 an = bn = 0 n = 2, 3, . . . (2.13)
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which implies sinh(2πImβ) ∼ (h2
1 − h2

2) = 0. Therefore, the β-deformed SYM theory is

finite only for β real and, as already stressed, the beta functions also vanish.

We emphasize that this result is independent of the renormalization scheme: had we

done the calculation using a different scheme the condition of finiteness would have led us

to the solution β real.

In the next section we will relax the finiteness requirement. We want to find the

condition that the couplings have to satisfy in the large N limit in order to guarantee

the vanishing of the chiral and gauge beta functions. We will find that in this case com-

plex values of β are allowed but the resulting conformal invariant theory depends on the

renormalization scheme.

3. Conformal invariance of the β-deformed theory via vanishing of the

chiral and gauge beta functions

Now we go back to the action in (2.1) and compute perturbatively in the large N limit

the chiral and gauge beta functions. The request of vanishing beta functions will identify

a conformal field theory.

First we consider the chiral beta function βh. It is well-known that in minimal subtrac-

tion scheme βh is proportional to the anomalous dimension γ of the elementary fields and

the condition βh = 0 can be conveniently traded with γ = 0. In our case, even working

in a generic scheme, one can easily convince oneself that at a given order in g2 the pro-

portionality relation between βh and γ gets affected only by terms proportional to lower

order contributions to γ. Therefore, if we set γ = 0 order by order in the coupling, we are

guaranteed that βh vanishes as well.

Thus we impose the vanishing of γ which we obtain from the computation of the two-

point chiral correlator. Up to three loops nothing new happens: the condition in (2.6)

insures the vanishing of γ up to the order g6 and correspondingly also βh is zero. Moreover

up to this order we can use the results in [13] and we are guaranteed that also the gauge

beta function βg is zero up to the order g9. This is easily understood since in spite of the

redefinition in (2.3) the request of vanishing anomalous dimensions up to order g6 works

order by order in the loop expansion so that general finiteness theorems [12, 13] hold. At

this stage the coefficients in (2.3) have to satisfy

O(g2) : a1 + b1 − 2 = 0

O(g4) : a2 + b2 = 0

O(g6) : a3 + b3 = 0 (3.1)

Things become more subtle at O(g8): here the only way to achieve the vanishing of γ

is to mix contributions from one loop with contributions from four loops. Repeating the

calculation of the divergent integrals, the result is proportional to

1

ǫ

[

A

(

µ2

p2

)ǫ

+ B

(

µ2

p2

)4ǫ
]

(3.2)
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where A and B were defined in (2.9) and we have explicitly indicated the factors coming

from dimensionally regulated integrals at one and four loops (here p is the external mo-

mentum and µ is the standard renormalization mass). The anomalous dimension is given

directly by the finite log term in (3.2) and then we see that at order g8 the vanishing of

the anomalous dimension γ requires

O(g8) : A + 4B = 0 (3.3)

We emphasize that at this order this condition ensures the vanishing of γ and βh , but as

it appears in (3.2) the theory is not finite. We will come back to this point and discuss its

implications below. First we want to show that the condition in (3.3) is sufficient to insure

that βg is zero up to the order g11.

Contributions to the gauge beta function at O(g11) come from two- and five-loop

diagrams. Using standard superspace methods the two-loop calculation is straightforward,

but at five loops the number of diagrams involved is large and the calculation looks rather

repulsive.2

In fact using the background field method and covariant supergraph techniques we

are able to perform this high loop calculation exactly. We take advantage of the results

obtained in [13] where the structure of higher-loop ultraviolet divergences in SYM theories

was analyzed using the superspace background field method and supergraph covariant D-

algebra [14]. Using this approach contributions to the effective action beyond one loop can

be written in terms of the vector connection Γa and the field strengths Wα, W̄α̇, but not of

the spinor connection Γα. This result allows to draw strong conclusions on the structure of

UV divergences in SYM theories. It was shown [13] that in regularization by dimensional

reduction UV divergent terms can be obtained by computing a special subset of all possible

supergraphs. The reasoning can be summarized as follows: at any loop order (with the

exception of one loop), after subtraction of UV and IR divergences, the infinite part of

contributions to the effective action is local and gauge invariant. By superspace power

counting and gauge invariance it must have the form

Γ∞ = z(ǫ) Tr

∫

d4x d4θ ΓaΓb(δ
b

a − δ̂ b
a ) (3.4)

where Γa is the vector connection from the expansion of the covariant derivatives, i.e.

∇a = ∂a − iΓa, produced in the course of the D-algebra. z(ǫ) is a singular factor from

momentum integration of divergent supergraphs and the n-dimensional δ̂ b
a is produced

from symmetric integration. Using the rules of dimensional reduction and the Bianchi

identities in terms of covariant derivatives one can show that

Tr

∫

d4x d4θ ΓaΓb(δ
b

a − δ̂ b
a ) = −ǫ Tr

∫

d4x d2θ W αWα (3.5)

From the above relation it is clear that in order to obtain a divergence the coefficient z(ǫ)

in (3.4) must contain at least a 1/ǫ2 pole. Moreover the complete result can be obtained by

2We recall that in [23] a calculation of similar difficulty was attempted: the four-loop gauge beta function

including nonplanar graphs. In that case the relevant coefficient was obtained by an indirect assumption

because a direct calculation was too involved.
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calculating tadpole-type contributions with a ΓaΓbδ
b

a vertex and then covariantizing them

by the substitution δ b
a → δ b

a − δ̂ b
a . Thanks to all of this even the five loop computation

becomes manageable.

We describe here the main steps that apply both to the two-loop and to the five-

loop calculation. As emphasized above we need consider graphs with internal chiral lines

only. Thus, according to the rules in [14], at a given order in loop one draws vacuum

diagrams with chiral covariant propagators and ∇2, ∇̄2 factors at the chiral vertices. Now,

in order to reduce as much as possible the number of terms produced in the course of the

∇-algebra, we do not perform the covariant ∇-integration at this stage but modify the

procedure as follows. We want to single out tadpole-type contributions proportional to

ΓaΓa, therefore we have to figure out which are the potential sources of such terms. The

explicit representation of the chiral covariant propagators is given by

¤+ =
1

2
∇a∇a − iW α∇α −

i

2
(∇αWα) ¤− =

1

2
∇a∇a − iW̄ α̇∇̄α̇ −

i

2
(∇̄α̇W̄α̇) (3.6)

Therefore in the expressions above we can disregard the terms involving the field strengths

since they do not enter the structure in (3.4). The ΓaΓa terms can arise only from the ex-

pansion of the covariant operator ∇a∇a or from contracted covariant derivatives ∇a . . .∇a

produced while performing the ∇-algebra. The net result is that we can immediately

expand the covariant propagators as follows

1

¤±
→

1
1
2∇

a∇a

→
1

¤
+

1

2

1

¤
ΓaΓa

1

¤
(3.7)

where ¤ = 1
2 ∂a∂a is the flat propagator. All the rest we drop since it will not contribute

to the structure we are looking for. In this way we obtain two types of diagrams:

(i) the ones with flat D2 and D̄2 factors at the vertices, flat propagators and one ΓaΓa

insertion, for which now standard D-algebra can be performed

and

(ii) the vacuum diagrams with flat propagators but ∇2, ∇̄2 factors at the chiral vertices

in which the ΓaΓa vertex will have to appear after completion of the ∇-algebra.

The relevant terms will be the ones that after subtraction of ultraviolet and infrared

subdivergences give rise to 1/ǫ2 contributions.

At the two-loop level the analysis is very simple: the vacuum diagram to be considered

is shown in figure 2a. Following the procedure described above, it is straightforward to

realize that only I-type diagrams can give rise to 1/ǫ2 poles and so the calculation reduces

to the one presented in [14].

We briefly summarize it here. Expanding the covariant propagators as in (3.7) one

obtains three times the diagram in figure 3 which corresponds to the term

1

2
Tr (ΓaΓa)

∫

dnk dnq

(2π)2n

1

q2(q + k)2k4
(3.8)
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Figure 2: Vacuum diagrams: (a) two-loops and (b) five-loops contributions.

Figure 3: Bosonic two-loop integral.

This integral contains a one-loop ultraviolet subdivergence and it is infrared divergent. It

is convenient to remove the IR divergence using the R∗ subtraction procedure of [24]. After

UV and IR subtraction one isolates the 1/ǫ2 term and rewrites the result in a covariant

form. Using (3.5) it can be recast in the standard divergent part of the two-loop effective

action giving a total contribution

N

(4π)2
3

4
A

1

ǫ
Tr

∫

d4x d2θ W αWα (3.9)

where we have reinserted the A factor defined in (2.9).

Now we are ready to attack the five-loop calculation which amounts to start with the

vacuum diagram in figure 2b. First we consider the I-type diagrams. In this case expanding

the covariant propagators as in (3.7) we produce twelve times the diagram in figure 4. We

perform standard D-algebra in the loops and look for a contribution that after subtraction

of IR and UV subdivergences gives rise to a 1/ǫ2 divergent term. One easily obtains a

single contribution corresponding to the bosonic integral shown in figure 4

1

2
Tr (ΓaΓa)

∫

dnk dnq dnr dns dnt

(2π)5n

1

r2(r + q)2s2(s + q)2t2(t + r)2(t + s)2(q + k)2k4

(3.10)

The IR divergence is treated as before via R∗ subtraction [24] so that, inserting all the

factors, the final result is given by

N

(4π)2
6

5
B

1

ǫ
Tr

∫

d4x d2θ W αWα (3.11)
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Figure 4: Five-loop supergraph and its associated relevant bosonic integral.

with B defined in (2.9).

In the class of II-type diagrams we have to analyze the vacuum diagram in figure 5. We

operate directly with the covariant spinor derivatives, pushing them through the propaga-

tors. Unlike in ordinary D-algebra, covariant spinor derivatives and space-time derivatives

contained in the propagators do not commute but it is easy to realize that they generate

field strength factors which are not interesting for our calculation. Thus we can commute

the ∇α’s through the ¤−1. The relevant contributions arise when we produce terms like

∇2∇̄2∇2 = ¤−∇
2 → −

1

2
ΓaΓa∇

2 ∇̄2∇2∇̄2 = ¤+∇̄
2 → −

1

2
ΓaΓa∇̄

2

∇α∇̄α̇∇
2 = i∇a∇

2 → Γa∇
2 ∇̄α̇∇α∇̄

2 = i∇a∇̄
2 → Γa∇̄

2 (3.12)

After all these preliminary observations, now one has to perform the covariant ∇-

algebra explicitly and isolate the diagrams that could produce 1/ǫ2 ultraviolet divergences.

It turns out that some cleverness must be used in order to reduce the number of the

resulting contributions. We show in figure 5 the successive manipulations that we used to

obtain the final answer. As indicated in the figure the first integration by parts of the ∇̄2

factor produces three terms: we have denoted by

// ≡
1
2∇

a∇a

¤
→ 1 −

1

2

ΓaΓa

¤
◮ ≡ ∇a = ∂a − iΓa (3.13)

At this stage we have to work separately on the three graphs and complete the ∇-

algebra by disregarding contributions which do not contain 1/ǫ2 divergent terms. (An

example of diagram which is not interesting is the one shown in figure 6. It arises from

the second diagram in figure 5 and would produce only 1/ǫ divergent terms.) In fact if

we move the ∇’s judiciously very few relevant terms are generated, the ones schematically

shown in figure 7. Now it is straightforward to show that by integration by parts these

potentially relevant graphs do cancel out completely.

In conclusion, the only relevant contributions to the gauge beta function at order g11

come from (3.9) and (3.11). Using the ordinary prescription to compute beta functions,

we find

O(g11) : βg = 0 ⇔ A + 4B = 0 (3.14)
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Figure 5: Five-loop vacuum diagram and ∇-algebra operations.

Figure 6: Example of diagram not contributing to the 1

ǫ
2 divergence.

Therefore a single condition on the A and B coefficients is sufficient to define the theory

at its conformal point up to the order g8 and to insure that, despite of the non-finiteness

of the theory, the gauge beta function vanishes at the next order.

Now we want to come back to the fact that at order g8 we have found that the theory

subject to the condition in (3.3) is not finite. In order to proceed consistently we need

renormalize the theory adding an appropriate counterterm. As it follows from (3.2) this

will be proportional to the divergence in the form

g8 (A + B)

(

1

ǫ
+ ρ

)

(3.15)
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Figure 7: Relevant bosonic integrals associated to the five-loop graph of figure 5.

where ρ is an arbitrary constant linked to the choice of a finite renormalization. It is worth

noticing that the results obtained so far are completely independent of the subtraction

scheme we have adopted. In fact even for the calculation of βg at O(g11) the arbitrary

parameter ρ does not enter in the evaluation of the coefficient of the 1/ǫ2 poles from which

we read βg. The issue that now we want to address is what happens to the next order.

If we were to push the conformal invariance condition one order higher we should

compute the chiral beta function at order g10. We have several sources of nontrivial contri-

butions to γ at this order: one coming from the one-loop bubble proportional to (a5 + b5),

one from two-loop diagrams and one from five-loop diagrams. In addition we need take

into account the contribution from the counterterm in (3.15) which gives

g10 (A + B)

(

1

ǫ
+ ρ

)

1

ǫ

(

µ2

p2

)ǫ

(3.16)

This last contribution is necessary to appropriately subtract diagrams that contain subdi-

vergences at two and five loops, i.e. the ones that contain 1/ǫ2 poles considered in section

2. The condition for vanishing γ, obtained as usual from the finite log terms, gives an

algebraic equation involving A, B and (a5 + b5) which, together with (3.3) allows to deter-

mine A and B parametrically and not necessarily vanishing. However the result depends

unavoidably on the arbitrary constant ρ which appears in the form

(A + B) ρ (3.17)

If we wanted to kill the scheme dependence of the result we would need to impose A+B = 0

which together with (3.3) would lead immediately to A = B = 0, i.e. the theory is finite

and Imβ = 0.

The comparison of these results with the ones of [6] as summarized in section 2 leads

to the conclusion that the request of conformal invariance via the vanishing of the beta

functions is less restrictive than requiring finiteness but the result is scheme dependent.

Pushing the calculations higher we expect to draw the same conclusion: conformal

invariance via vanishing beta functions allows for Imβ 6= 0 but this value and ultimately

the conformal theory depend on the choice of the particular renormalization scheme we use.
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4. Differential renormalization approach

In order to show that our findings do not depend on the particular regularization used in

this section we reconsider the calculation of the chiral propagator up to the order g8 in the

scheme of differential renormalization.

Differential renormalization works strictly in four dimensions. In its original formula-

tion [25] it is a renormalization without regularization, i.e. it allows for a direct computation

of renormalized quantities without the intermediate step of regularizing divergent integrals.

In coordinate space the procedure consists in replacing locally singular functions (functions

which do not admit a Fourier transform) with suitable distributions defined by differen-

tial operators acting on regular functions, where the derivatives have to be understood in

distributional sense. The simplest example is the function 1/(x2)2 from the one-loop con-

tribution to Γ(2). This function has a non-integrable singularity in x = 0. The prescription

required by differential renormalization in order to subtract such a singularity is

• We substitute
1

x4
→ −

1

4
¤

log M2x2

x2
(4.1)

where M is identified with the mass scale of the theory.

• We understand derivatives in the distributional sense, i.e.
∫

d4xf(x)¤
log M2x2

x2
≡

∫

d4x¤f(x)
log M2x2

x2
(4.2)

for any regular function f .

The two expressions in (4.1) are identical as long as x 6= 0, whereas they differ by

a singular term for x → 0. The substitution (4.1) can then be understood as adding a

suitable counterterm [26]–[28]:

1

x4
= −

1

4
¤

log M2x2

x2
+ c(α)δ(4)(x) (4.3)

where c(α) can be computed in some regularization scheme and becomes singular when

the regularization parameter α is removed.

Having in mind to study conformal invariance and/or finiteness for the deformed theory

we need compute both the renormalized chiral propagator and its divergent contributions.

As long as we are interested in Γ
(2)
R we apply the standard differential renormalization

prescription (4.1) order by order in g2, whereas in order to identify the divergent coun-

terterms which in (4.1) are automatically subtracted we need introduce a regularization

prescription. We compute divergences using the analytic regularization [29].

As noticed above we are interested in computing the difference (Γ
(2)
deformed − Γ

(2)
N=4).

Thus at one-loop in coordinate space the contribution from the self-energy diagram is

Γ(2) =
1

x4
(h2

1 + h2
2 − 2g2)

N

(4π2)2
(4.4)

=
1

x4

[

(a1 + b1 − 2)g2 + (a2 + b2)g
4 + (a3 + b3)g

6 + (a4 + b4)g
8 + · · ·

] N

(4π2)2
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We renormalize this amplitude by the prescription (4.1). At order g2 we find the condi-

tion (2.5) which guarantees finiteness and vanishing of the beta functions.

As already discussed, once the condition (2.5) is satisfied we can neglect all higher

loop diagrams which contain bubbles. In particular, at two and three loops we do not find

relevant diagrams. Therefore, at orders g4 and g6 only the one-loop expression (4.4) con-

tributes and the conditions (3.1) are sufficient to cancel the renormalized and the divergent

parts of 1/x4.

At order g8 the pattern changes since besides the contribution from (4.4) we have the

new diagram in figure 1. After D-algebra, in configuration space it corresponds to

−
1

2
(a1 − b1)

4g8 N4

(4π2)8
1

x2

∫

d4y d4z d4w

y2z2(y − z)2(y − w)2(z − w)2(x − y)2(x − w)2
(4.5)

This expression has a singularity for x ∼ y ∼ z ∼ w ∼ 0. To compute its finite part, away

from x = 0 it is convenient to rescale the integration variables as y → |x|y, z → |x|z and

w → |x|w. We are then left with

−
1

2
(a1 − b1)

4g8 N4

(4π2)8
1

x4

∫

d4y d4z d4w

y2z2(y − z)2(y − w)2(z − w)2(1 − y)2(1 − w)2
(4.6)

The integral is finite and uniformly convergent for x → 0. It has been computed e.g. in [30]

and it gives 20π6ζ(5). At order g8, summing this contribution to the one-loop result and

renormalizing 1/x4 as in (4.1) we obtain

Γ
(2)
R |g8 = (A + 4B)

(

−
1

4π2
¤

log M2x2

x2

)

(4.7)

where A and B are given in (2.9).

Therefore, the condition of vanishing γ from Γ
(2)
R requires A + 4B = 0. This is exactly

the condition we have found working in dimensional regularization and momentum space.

This is consistent with the fact that the Fourier transform of ¤
log M2x2

x2 is 4π2 log p2/M2.

Now we concentrate on the evaluation of the divergent contributions from the one-loop

self-energy diagram and from the four-loop diagram in figure 1. Using analytic regulariza-

tion in four dimensions, at one loop and order g8 we have (for simplicity we neglect (2π)

factors)

A
1

(x2)2+2λ
(4.8)

whereas at four loops we need evaluate the integral

−
N4

2
(a1 − b1)

4g8 1

(x2)1+λ
× (4.9)

∫

d4y d4z d4w

(y2)1+λ(z2)1+λ[(y − z)2]1+λ[(y − w)2]1+λ[(z − w)2]1+λ[(x − y)2]1+λ[(x − w)2]1+λ

Dimensional analysis allows to compute this integral and obtain (20ζ(5) + O(λ)) 1
(x2)1+7λ .

This gives the final answer 4B/(x2)2+8λ for the diagram in figure 1.
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Now using the general identity

1

(x2)2+αλ
∼

1

αλ
δ(4)(x) + O(λ0) (4.10)

and summing the one and four-loop results we find that the divergent contribution is

A
1

(x2)2+2λ
+ 4B

1

(x2)2+8λ
→ (A + B)

1

2λ
δ(4)(x) (4.11)

Therefore the cancellation of divergences at order g8 requires A + B = 0. If we were to

compute the divergences arising at order g10 we would find results in total agreement with

the results found using dimensional regularization. Going higher in loops we would meet

the same pattern an infinite number of times and we would be led to the final result for

the coefficients as in (2.13).

5. Conclusions

We have reexamined the problem of finding superconformal fixed points for β-deformed

SYM theories in the large N limit and for the deformation parameter β generically complex.

In a previous paper [6] we addressed this issue by requiring the theory to be finite. In this

paper instead we have reformulated the problem by requiring the theory to have vanishing

beta functions.

Looking for a surface of renormalization fixed points we have expressed the chiral

couplings as power expansions in the gauge coupling g (see eq. (2.3)). This introduces an

infinite number of arbitrary coefficients which we fix by requiring order by order either

finiteness or zero beta functions.

This coupling constant reduction has an important consequence on the perturbative

analysis of the theory. In fact we are forced to work pertubatively in powers of g instead of

powers of loops and at a given order different loops do mix. It follows that the condition of

finiteness for the theory at a given order does not necessarily imply that the beta functions

vanish and viceversa, in contrast with the case of a standard loop expansion.

Collecting the present results and the ones in [6] the general situation can be then

summarized as follows. If we impose the cancellation of UV divergences at a given order we

obtain conditions on the coefficients in the expansion (2.3) which do not set automatically

to zero the contribution to the chiral beta function at the same order. In particular, in

the planar limit the first nontrivial order where this happens is g8. However, if we move

one order higher and still require the cancellation of divergences we obtain more restrictive

conditions on the coefficients and as a by-product all the beta functions at that order

vanish. This pattern repeats itself at any order in pertubation theory and leads to the

following result: The finiteness condition selects a unique expansion (2.3) for hi(g) which

corresponds to sinh (2πImβ) ∼ (h2
1 − h2

2) = 0, i.e. to a real deformation parameter β.

On the other hand, if we implement superconformal invariance by requiring directly

vanishing beta functions regardless of finiteness we obtain less restrictive conditions on the

coefficients in (2.3) and more general solutions hi(g) to the renormalization group equation
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F (g, hi) = 0 which defines the surface of fixed points. These solutions correspond in general

to theories which are not finite and allow for a complex deformation parameter.

In our analysis the term “finiteness” is used in the standard way, that is to indicate

a theory which does not have UV divergences at any order in perturbation theory and,

consequently, does not require any renormalization. In this sense finiteness is a well-

defined and scheme independent statement. Its physical meaning is unquestionable since

the set of couplings selected by this condition is uniquely fixed. On the other hand, it is a

matter of fact that in the presence of coupling constant reduction the conditions βh, βg = 0

turn out to be scheme dependent. This means that the set of couplings which solve these

equations is not uniquely determined but depends on the renormalization scheme we chose.

In particular, the generically complex value of the deformation parameter β that we find

is scheme-dependent. This is the reason why in our approach finiteness and vanishing

beta-functions are not equivalent statements.

A more general scenario can be obtained if we relax the request of scheme independence

when imposing finiteness. In dimensional regularization scheme dependence can be intro-

duced by hands through the use of evanescent terms [19] in the reduction equations (2.3).

The extra freedom introduced by these ǫ-dependent terms allows to define the theory to be

simultaneously finite and at its superconformal point for generically complex but scheme

dependent β parameters, in agreement with [18, 19, 7]. Therefore, the apparent discrep-

ancy between our results and other statements in the literature [18, 19, 7] can be traced

back to the use of a different definition of finiteness.

In the presence of coupling constant reduction we are not guaranteed that finiteness

theorems [12, 13] for the gauge beta function are true in their standard version. However,

pushing the perturbative calculation up to five loops, we have found that given the chiral

beta function vanishing at order g9, then the gauge beta function is automatically zero at

order g11. Our result suggests that the finiteness theorems might be generalized as follows:

If the matter chiral beta function vanishes up to the order (gn) then the gauge beta function

vanishes as well up to the order (gn+2).

We have worked in the planar limit where the condition for superconformal invariance

is known exactly [2]. However, the same pattern for finiteness vs. conformal invariance

should appear also at finite N . This issue is presently under investigation.
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